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Abstract. This study is to propose a fully automatic crime scene shoep-
rint retrieval algorithm that can be used to link scenes of crime or de-
termine the brand of a shoe. A shoeprint contour model is proposed to
roughly correct the geometry distortions. To simulate the character of the
forensic experts, a region priority match and similarity estimation strat-
egy is also proposed. The shoeprint is divided into two semantic regions,
and their confidence values are computed based on the priority in the
forensic practice and the quantity of reliable information. Similarities of
each region are computed respectively, and the matching score between
the reference image and an image in the database is the weighted sum.
For regions with higher confidence value, the similarities are computed
based on the proposed coarse-to-fine global invariant descriptors, which
are based on Wavelet-Fourier transform and are invariant under slight
geometry distortions and interference such as breaks and small holes, etc.
For regions with lower confidence value, similarities are estimated based
on computed similarities of regions with higher confidence value. Param-
eters of the proposed algorithm have learned from huge quantity of crime
scene shoeprints and standard shoeprints which can cover most practical
cases, and the algorithm can have better performance with minimum
user intervention. The proposed algorithm has been tested on the crime
scene shoeprint database composed of 210,000 shoeprints provided by
the third party, and the cumulative matching score of the top 2 percent
is 90.87.

1 Introduction

It is generally understood that marks left by an offender’s shoeprint at a crime
scene may be helpful in the subsequent investigation of the crime [5]. According
to statistics, 35 percent of crime scenes had footwear prints valuable in forensic
science [12], and 30 percent of all burglaries provide valuable shoeprints [11].
Shoeprints are distinctive patterns that are often found at crime scenes and
have been obtaining increasing importance in forensic investigations. The most
challenging task for a forensic examiner is to work with highly degraded footwear
marks and matching them to the most similar shoeprint available in the database.

Some semiautomatic shoeprint retrieval methods based on various geometric
patterns are reported in [11], [21], [3], and a series of patterns are chosen by
human experts to classify the shoeprints. An automatic pattern classification
method is proposed in [22], but it doesn’t work well with debris and shadows.
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Bouridane et al. [4], [1] utilize fractals to represent the shoeprints and use
a mean squared noise error as the similarity measure. Accuracy of the match
is 88% in classifying 145 images. This system does not attempt to answer the
questions of partial, rotation or scale invariance.

Z. Geradts et al. [10] used the two-dimensional Fourier transform to classify
those geometric shapes. Match was achieved with a neural network processing
the Fourier transform coefficients and the positions of geometric shapes.

P. De Chazal et al. [9] use the power spectral density (PSD) to characterize
the images for translational invariance, and the 2D correlation coefficient is used
as the similarity measure. Results show that shoeprints are correctly matched in
the top 5% of the sorted DB patterns with an 85% score. However, noisy images
are not considered.

Fourier transforms modified phase only correlation (MPOC) is used in [13].
The reference DB consists of 100 different shoes available on the market and
four sets of synthetic versions. The experimental result demonstrates a 100%
first rank recognition rate, but the system is not invariant under translation or
rotation.

Hu’s seven moments are employed in [2] in order to have translation, rota-
tion and scale invariance. Hu’s moments are used on a reference DB containing
500 shoeprints and their noisy rotated versions. Results show a sharp drop of
accuracy to 5.4% when the Gaussian noise variance is up to 0.2.

Gabor and Radon transform are used in [16] to extract multiresolution in-
variant features, and the first rank recognition rate can reach 91%.

Maximally Stable Extremal Region (MSER) feature is used in [17] to identify
the features of the shoeprint and the Scale Invariant Feature Transform (SIFT)
descriptors are employed to describe them. The reference DB is made of 374
shoeprints. Each pattern class consists of two images, a reference set image
containing a whole left and right print, while the test set is made of an image
of either a complete left or right print. They reported a 94% classification rate
if viewing only 5% of the database, but no tests are performed on noisy images.

An image retrieval algorithm combing the information of the phase and the
power spectral density of the Fourier transform calculated on their Mahalanobis
map is employed in [8] and [7]. The reference DB consists of 35 shoeprints and
the system is tested on synthetic as well as on real shoeprints coming from crime
scenes. They reported 91% of the real case shoeprints found in the top 6.

Most of the above mentioned retrieval algorithms work well only with clear
prints or synthetic shoeprints, but fail with crime scene shoeprints. The possi-
ble reasons are that they use features that are hard to be captured from the
crime scene shoeprints, and the crime scene shoeprints are highly degraded and
randomly partial. For example, (i) Real scene shoeprint images are always bi-
narized to be separated from the backgrounds, but local invariant descriptors
such as SIFT, MSER or SURF don’t have good performance for binary images.
(ii) There are many random extrusions, intrusions or breaks on the edges of
patterns, and patterns are always randomly bridged. Fractal patterns and local
invariant descriptors can be falsely extracted because of these interferences. (iii)
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Fourier based methods have better performance than fractal patterns and local
invariant descriptors, but they are not well correlated with the human visual
system.

2 Aim

In this paper, we propose a simple but efficient low quality shoeprint images
retrieval algorithm, and the test images and shoeprint images in the database
all come from real crime scenes without any synthetic shoeprints or generated
partials. What the proposed algorithm differs from the other existing algorithms
are on the capacity of the real crime scene database, Shoeprint Contour Model
used for geometry correction, hybrid Wavelet-Fourier based global invariant fea-
ture descriptors and the robust matching strategy which has better correlation
with the forensic experts.

3 Shoeprint Database

Two databases of shoeprint images are formed by more than 4,000 and 200,000
shoeprints provided by Dalian Everspry SCI & TECH CO., LTD, China. The
first database consists of clear and full 4950 shoeprints created by taking impres-
sions of footwear outsoles provided by footwear vendors, and in this paper,we
refer this kind of shoeprints as standard shoeprints. The second databases is
derived from the real crime scene and composed of variable quality left or right
prints. Images from the second database possibly differ on position, orientation,
scale, quantity of reliable information, quality and imaging conditions. Besides
of some clear full prints, most images in the database are misaligned, incomplete
and degraded prints interfered with debris, shadows or other artifacts. Some
typical examples of both databases are shown in Fig. 1.

4 Methods

The proposed algorithm has two phases: on-line retrieval and off-line feature ex-
traction. In the off-line feature extraction phase, every image in the constructed

Fig. 1. Typical examples of shoeprints in the databases. The left four shoeprints are
from real crime scenes, and the others are standard shoeprints.
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shoeprint database is firstly preprocessed to separate the shoeprint from back-
grounds, and then Wavelet-Fourier based global invariant features of each part
are extracted, finally the features of each image are pooled into the shoeprint
feature database prepared for print retrieval. In the on-line retrieval phase, con-
fidence value and features of each part of every input image are computed, and
then similarity measures of high confidence parts between the input image and an
image in the database are computed, and similarity measures of low confidence
parts are estimated based on computed similarity measures, and the similarity
score between the input image and the image in the database is defined as the
weighted sum of similarity measures of two parts, and finally outputs the ranked
list of images based on the similarity score sorting. The flow diagram of the
proposed algorithm is shown in Fig. 2.

4.1 Image Preprocessing

The goal of this stage is to separate the shoeprints from backgrounds and normal-
ize the extracted shoeprints. Image preprocessing includes the following steps: 1)
Shoeprint extraction: A local adaptive thresholding technique is used to extract
the shoeprint images from backgrounds. We firstly split the image into a grid
of cells and then apply a simple thresholding method (e.g. Otsu’s method) on
each cell to extract sub prints, and morphological operations are finally used
to fill little holes and smooth edges. 2) Resolution normalization: The picture
of the print is taken with a forensic scale near to the print and it is rescaled
to a predefined dpi. 3) Orientation normalization: A Shoeprint Contour Model
(SPCM) is proposed to normalize the shoeprint image.

The SPCM is to represent the shape of a shoeprint with a set of landmarks.
Firstly enough shoeprint images with various shapes are collected to be as the
training set. Secondly a set of points are labeled to annotate shoeprint contour,
and finally dimensionality reduction technique are used to extract the average
shoeprint contour model. In Fig. 3(a) and Fig. 3(b), given a full shoeprint image,
the average SPCM model is used to estimate the initial positions, and a morpho-

IP WFFE SMC

FDB

Retrieval 
result 

DB
IP WFFE

IPCC

IPCC
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Online Retrival

Offline Feature Extraction

Fig. 2. The flow diagram of the proposed algorithm. IP, IPCC, WFFE, SMC, SESS,
DB and FDB are abbreviations for Image Preprocessing, Image Partion and Confi-
dence Computation, Wavelet-Fourier Based Feature Extraction, Similarity Measure
Computation, Similarity Estimation and Score Sorting, Shoeprint Database and Fea-
ture Database, respectively.
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logical close operation with larger size of structure element and an active contour
method (e.g. Snake [23]) are used to find the best matching position between the
model and the data in the input image. In Fig. 3(c), for a partial image, three
points (front most point, rearmost point, and leftmost point) are marked inter-
actively, and the shoeprint contour is estimated by the average SPCM model and
the landmarks. Once the contour of the input image is estimated, the shoeprint
image can be aligned to the predefined orientation and position, and the scales
can be refined. In practical applications, the region of foot arch usually can’t
be acquired from crime scenes, and the contour of foot arch just needs to be
estimated coarsely. For accurate estimation of the foot arch, another two points
besides of three points marked shown in Fig. 3(c) are needed to be labeled, and
the two points are close to the maximum or minimum curvature points on the
left or right boundary of the foot arch region respectively, which are shown in
Fig. 3(d).

4.2 Image Partion and Confidence Computation

When an experienced forensic expert compares two shoeprints, he or she may
divide a full shoeprint into toe section, sole section, instep (arch) section, heel
section and back of heel section, and each section has a classification priority. The
sole section has the highest priority, and the heel section has the second highest
priority, and the arch section has the lowest priority. In the proposed algorithm,
to simulate the character of the forensic experts, we define a confidence value
which is biased toward those parts which: (i) have higher priority in the forensic
practice and (ii) have much more reliable information.

Given a region s, we define its confidence value C(s) as the product of two
terms:

C(s)=P (s)H(s) (1)

We call P (s) the priority term and H(s) the information term. The confidence
value of each region is used to be the weights of pooling region matching scores

(a) Average SPCM (b) Refined SPCM (c) Estimated
SPCM

(d) SPCM with
arch contour

Fig. 3. SPCM of the shoeprint images (White circles denote the landmarks)
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to be the total score. C(s) is also used to judge whether the region can be used
to retrieve shoeprints.

Based on thousands of crime scene shoeprints, we have found that patterns
of the sole sections and the heel sections determine the retrieval results in most
cases. Thus, the shoeprint is roughly divided into the top region and the bottom
region. The top region mainly includes the toe section, sole section and parts
of the arch section, and the bottom region mainly includes the other parts of
the arch section, the heel section and the back of heel section. Each region is
assigned a predefined priority value. The ratio of the top region height to the
bottom region height is 3 to 2, which is learned from training samples. Details
are shown in Fig. 4. The priority value is defined as:

P (s) = 1−

∑
j∈s

R(j)∑
i

R(i)
(2)

where s represents the top region or the bottom region, P (s) represents the
priority value of region s, R(i) represents the priority order of each section. The
priority orders of all sections are listed in Tab. 1.

Top

Bottom
h

0.6h

0.4h

Toe

Sole

Instep

Heel

Back of Heel

Fig. 4. Shoeprint partion

Table 1. Priority order of each section

Section number Section of shoeprint Rank order

1 Toe 3
2 Sole 1
3 Heel 2
4 Black of Heel 4
5 Instep 5

Information value is used to measure the amount of reliable information of
the two regions. For a region with all black pixels, the information value is set
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to 0. For a region with all white pixels, the information value is set to 1. The
information value is defined as:

H(s) =

∑
p∈s

I(p)

|s|
(3)

where s denotes the section, |s| is the area of s, p is the pixel point, I represents
the shoeprint image.

4.3 Wavelet-Fourier Feature Extraction

Three kinds of features which include fractal patterns, 2D Fourier Transforms or
Fourier-Mellin Transform and local invariant descriptors have been commonly
used to retrieve shoeprints in the literature. We have tested these features on
more than 4 thousand kinds of standard shoeprints and 210 thousand real crime
scene prints, and found that the three kinds of features work very well for stan-
dard shoeprints, synthetic prints or very clear and complete realcrime scene
prints but failed for most of real crime scene prints.

Our perception of the universe uses different scales: Each category of observa-
tions is done in a proper scale. Using a larger scale, we can observe more details.
Using a small scale, we can observe only macroscopic details of shoeprint pat-
terns without seeing small holes, breaks, extrusions and intrusions. By changing
the scale, we can observe or represent the object from coarse-to-fine. For these
reasons, we use Wavelet transform [15] which represents both the spatial and fre-
quency domain simultaneously to extract features of shoeprints across different
scales. There is much redundant or irrelevant information contained in wavelet
coefficients which are sensitive to translation, rotation and scaling, and Fourier-
Mellin [19] transform is employed to extract discriminative invariant features in
one or several special spatial-frequency subbands. We call this method Wavelet-
Fourier transformation based global invariant descriptor. Since Fourier-Mellin
transform can capture global invariant features, the proposed descriptor is not
only global invariant under translation and rotation on each scale, but also has
a multi-resolution matching ability.

The proposed feature extraction method has three steps. The first step is to
transform a specified region of the input shoeprint I(s) to its wavelet domain,
and W(l, h, v) is used to represent the wavelet coefficients where l denotes the
level, h and v indicate the sub-bands of wavelet coefficients. The second step
is to perform Fourier-Mellin transform on each band of wavelet coefficients and
compute the power spectral density of the coefficients of Fourier-Mellin transform
and filter out unnecessary coefficients. M(l, h, v) is used to represent the PSD of
each band. The third step is to choose which bands of coefficients to be features.
The flow diagram of the descriptor exaction is shown in Fig. 5.

The detailed steps of the feature extraction algorithm are as follows:
Step 1: Input the specified region I(s) with the confidence value greater

than the predefined value. I(s) is decomposed using Haar Wavelet to a specified
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Fig. 5. Flow diagram of feature descriptor extraction

number of levels. At each level we will have one approximation subband and
three details. The wavelet coefficients of I(s) can be described as:

W(s)= {W(l,h,v)|0 ≤ l ≤ L,h,v = 0,1} (4)

where L is the maximum levels. To avoid merging the useful neighbor patterns,
L should meet the critera: 2L−1 ≤ Dmin, where Dmin represents the minimum
distance between two neighbor patterns which can be specified interactively.

Step 2: For each band of wavelet coefficients W(l, h, v), the Fourier-Mellin
transform is applied, and the PSD of each band denoted as M(l, h, v) is com-
puted. The processes are as follows:

Step 2.1: For a given band coefficients W(l, h, v), the PSD of its Fourier-
Mellin transform is computed, and it is denoted as P(l, h, v) which is invariant
under translation, rotation and scaling.

Step 2.2: In a shoeprint, large connected bridges between patterns appear
in the PSD as very low-frequency components, and a high-pass filter H(ξ, η)
proposed in [19] is firstly used to weaken the effects of these components. Noises
such as small holes, intrusions, extrusions and broken patterns appear in the
PSD as very high-frequency components, and an ideal lowpass filter whose cut-
off frequency is taken for 0.8 times of the highest frequency is then used to
remove them. A band-pass filtered version of M(l, h, v) denoted as P(l, h, v) is
finally obtained by previous two filters.

Step 3: This step is to determine which bands of coefficients to be the re-
trieval features. Each subband has different contribution to the retrieval results.
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For a highly degraded image, the approximation band is very important whereas
details maybe interferences. For a shoeprint image with better quality, details
can improve the accuracy. Subbands with rich information should be chosen in-
tuitively. We use the standard deviation of M(l, h, v) to measure the information
quantity, and choose the top k subbands to be the retrieval features:

WM(s)= {M̂1(l, h, v) · · · M̂k(l, h, v)} (5)

where WM(s) represents the global invariance descriptor of region s , M̂i(l, h, v)
represents the ith subband ordered by the information quantity from the largest
to the smallest value. For a highly degraded shoeprint, details are less important,
and the approximation band of the highest level can directly be the features:

WM(s)=M(L, 0, 0) (6)

The global invariance descriptors of the top region and the bottom region
of the shoeprint with higher confidence can be computed, and they are denoted
as WM(sT) and WM(sB) respectively. These features are used to measure the
similarities between two shoeprints. For shoeprints in the database, they are
captured from different crime scenes with different quality, features of every
suband are extracted for future use when constructing the feature database. For
a shoeprint to be retrieved, the features are selected according to Eq. (5) and
Eq. (6).

4.4 Similarity Measure Computation

In order to compare a reference image with a database image, a measure of
similarity between the images is required. The larger the measure of similarity
between the reference image and the database image, the more similar the two
images are. A reference image is compared to all images in the database and the
similarity measure calculated for each comparison is used to rank the images in
the database in a most similar to least similar order.

The similarity measure adapted in this paper is the 2D correlation coefficient
[20]. For features WM1 and WM2, the correlation coefficient r is calculated
using

Ŵ1(s)=WM′
1(s)−WM̄′

1(s)

Ŵ2(s)=WM′
2(s)−WM̄′

2(s)

r(s) = Ŵ1(s)Ŵ2(s)

|Ŵ1(s)||Ŵ2(s)|

(7)

where WM′(s) is the 1D vector representation of WM(s), WM̄
′
(s) is the

mean of WM(s), Ŵ1(s) and Ŵ2(s) represent features of region s from different
shoeprints.
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4.5 Similarity Estimation and Scores Computation

The shoeprint image is divided into the top and bottom regions. Similarities
of each region are computed respectively, and the total similarity between the
reference image and an image in the database is the weighted sum of the similar-
ity measures of the two regions. For an input image, the similarity between its
mirror version and an image in the database is also computed. The final score is
the greater one, which is insensitive to the left print or the right print. The flow
diagram of the matching score computation is shown in Fig. 6.
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Fig. 6. Flow diagram of the matching score computation

The matching score between the test shoeprint and the ith image in the
database g(i) is computed according to Eq. (8). For regions of higher confi-
dence value, the similarity measure is computed directly according to Eq. (7).
To weaken the effect of missing regions and regions of lower confidence value,
the similarity measure of those regions can’t be computed directly according to
Eq. (7). If the confidence value of the specified region of the test shoeprint image
is greater than the predefined threshold, and the confidence value of the image
in the database is lower, the similarity measure is estimated from computed ones
of images with higher confidence values, according to Eq. (17). If the confidence
value of the specified region of the test image is also lower, the similarity mea-
sure is set to a predefined value. In order to let the full shoeprints of the same
pattern in the database lie in front of the partial ones, the predefined value is
not simply set to 0, and it is obtained by means of trial and errors.
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g(i)=

{
go(i) go(i) > gm(i)
gm(i) else

(8)

go(i)=T • ro(sTop) +B • ro(sBottom) (9)

gm(i)=T • rm(sTop) +B • rm(sBottom) (10)

T=
C(sTop)

C(sTop) + C(sBottom)
(11)

B=
C(sBottom)

C(sTop) + C(sBottom)
(12)

ro(sT)=

 r (sT)
roest(sT)
rTop

C(sT) > Cth(sT), Ci(sT) > Cth(sT)
C(sT) > Cth(sT), Ci(sT) < Cth(sT)

else
(13)

ro(sB)=

 r (sB)
roest(sB)
rBottom

C(sB) > Cth(sB), Ci(sB) > Cth(sB)
C(sB) > Cth(sB), Ci(sB) < Cth(sB)

else
(14)

rm(sT)=

 r (sT)
roest(sT)
rTop

C(sT) > Cth(sT), Ci(sT) > Cth(sT)
C(sT) > Cth(sT), Ci(sT) < Cth(sT)

else
(15)

rm(sB)=

 r (sB)
roest(sB)
rBottom

C(sB) > Cth(sB), Ci(sB) > Cth(sB)
C(sB) > Cth(sB), Ci(sB) < Cth(sB)

else
(16)

where Cth(sT) and Cth(sB) are the predefined thresholds, rTop and rBottom are
predefined default similarity values. After the similarities of regions with higher
confidence values have been computed according to Eq. (7), roest(s) is estimated
from computed similarity measures:

roest(s)=
a(s) + ϕb(s)

1 + ϕ
(17)

a(s)=min
i

(ri(s)), s.t.Ci(s) > Cth(s) (18)

b(s)=max
i

(ri(s)), s.t.Ci(s) > Cth(s) (19)

where ri(s) represents the similarity measure, ϕ is the golden ratio which is
0.618.
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5 Experiments and Results

5.1 Performance Evaluation Measure

The proposed algorithm is designed to sort shoeprint images of the database
in response to a test image and present the ranked list to the user for final
evaluation. An algorithm with higher performance will present fewer nonmatch-
ing images than an algorithm with lower performance. Cumulative Matching
Characteristic Curve (CMC) is used to measure the accuracy performance of a
retrieval algorithm operating in the closed-set identification task [18]. Images in
the gallery set are compared and ranked based on their similarity with the test
(probe) images. The CMC shows how often the probe image appears in the top
n matches.

5.2 Test Images and Gallery Set

To evaluate the performance of the proposed algorithm, twelve groups of crime
scene shoeprint images provided by the third party are used to be test images.
Shoeprint images of each group have the same patterns, and have been acquired
from different crime scenes with different image quality. The test images cover
most patterns and possible cases that can be found in the real crime scenes. Each
group has different number of images, and the total number of the test images
is 72. Images from each group differ on position, orientation, scale, quantity
of reliable information, quality and imaging conditions. In order to verify that
the proposed algorithm is insensitive to geometry distortions, each test image is
synthetically transformed into different translation, rotation and scaling versions,
and another 432 images are inserted into the gallery sets.

Two gallery sets are constructed to test the performance. The first gallery
set denoted as GS1 includes 72 test images, 432 generated geometry distortion
versions of the test images and another 9592 crime scene shoeprints, and GS1

is often used by the third party to evaluate the performance of the retrieval
algorithms. The second gallery set denoted as GS2 consists of about 210,000 real
crime scene shoeprints of China. The proposed algorithm is used to retrieve the
test images on these gallery sets and is evaluated by the CMC measure. It should
be noted that many other shoeprints in the database have the same patterns with
test images, but they aren’t labeled, so the practical cumulative matching score
of the proposed algorithm should be much higher than the experimental results.

5.3 Parameters Selection

The proposed algorithm has four main parameters, which are Cth(sT), Cth(sB),
rTop and rBottom. This experiment is to select the optimal value for every param-
eters, and the experiment is conducted on the gallery set GS1. The experimental
result shows that the cumulative matching score can reach the highest one when
the confidence value threshold is 0.03 and the estimated similarity is 0.3. For
more details, please refer to Section I of the supplementary material.
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5.4 Performance of Anti-geometry Distortion

To verify the anti-geometry distortion ability of the proposed algorithm, 72 test
images are respectively inputted into the retrieval algorithm, and statistically
count the number of their synthetically generated geometry distortion versions
lying in the top 7 in the ranked list of results. Since the gallery includes the
test images, the first one in the sorted list is the test image itself. In theory,
the transformed versions of the test image should be at the top of the sorted
list, but in practice, the generated images may lose some information because
of out of range, and some images of the same category may also lie in the top
7. Although the average percent is just more than 81%, the left 19% images
are almost from the same classes. These results show the proposed algorithm is
robust to geometry distortions. For more details, please refer to Section II of the
supplementary material.

5.5 Performance Comparisons with The State of Art Algorithms

Performance experiments are conducted on the two gallery sets GS1 and GS2

respectively, and the accuracies are shown in Tab. 2. The CMC curves are shown
in Fig. 7. The experimental results show that the accuracy of top 2% is more
than 87.5% on the gallery set GS1 and 90.87% on the gallery set GS2. Fur-
thermore, there are also a lot of unmarked same pattern images on the top 2%
of the ranked lists, and the accuracy of correct match would be much higher
than the current accuracy. For more details, please refer to Section III of the
supplementary material.

As stated in introduction, most algorithms have better performance under
their assumed conditions such as qualities of test images and capacity of the
gallery set, etc. Due to lack of public evaluation databases and public available
test softwares, comparisons just depend on what the literature reported, and the
comparison results are listed in Tab. 3.

Table 2. Retrieval performance of the proposed algorithm on GS1 and GS2

Datebase Performance
Ranks of Retrieval Results

0.1% 0.2% 0.3% 0.4% 0.5% 1% 2%

GS1
Accuracy(%) 45.2 64.1 69.4 73.8 75.8 81.8 87.5

Cumulative Number 228 323 350 372 382 412 441

GS2
Accuracy(%) 68.7 75.2 77.6 80.0 80.8 84.7 90.9

Cumulative Number 345 379 391 403 407 427 458

6 Conclusion

In this study, we proposed a simple but efficient low quality footprint images
retrieval algorithm, and the proposed algorithm has been tested on the database
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Fig. 7. CMC of the proposed algorithm on two gallery sets

Table 3. Comparison with other algorithms

Methods Performance Gallery set description

[4] 88% 145 full-print images with no
spatial or rotational variations

[9] 85%(Top 5%) 476 complete shoeprint images
belonging to 140 pattern groups

[13] 100%(the first rank) 100 shoeprint images and 6,400
generated images

[2] 99.4%(Gaussian noise
with variance 0.01)

500 clear and full shoeprints from
shoe manufactures

[8, 7] 91%(Top 6) 35 shoeprints

Ours
45.2%(Top 0.1%) 10,096 crime scene shoeprints
87.5%(Top 2%)
90.9%(Top 2%) 210,000 crime scene shoeprints
94.1%(Top 5%)

provided by the third party. The gallery database consists of more than 210,000
real crime scene images, and most images in the database are misaligned, incom-
plete and degraded prints interfered with debris, shadows and other artifacts.
The accuracy of the proposed algorithm is more than 90.87% within top two
percent of the ranked list of images. The average retrieval time for an image on
the gallery set composed of 210,000 images is about 30s on an ordinary PC with
a 3.10 GHz CPU and 8GB RAMs. Parameters of the proposed algorithm have
learned from huge quantity of crime scene shoeprints and standard shoeprints,
and they are applicable in most cases. Therefore, the retrieval results don’t de-
pend on the skills of the operators.

Our future work is to increase both the precision rate and the recall rate of
retrieving crime scene shoeprints with less reliable information.
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Research Funds for the Central Universities.
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